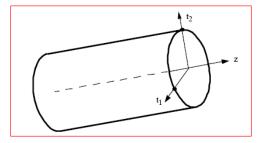


Modes de Propagation

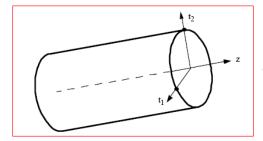
1 MAG-EPFL

Propagation guidée



On parle de propagation guidée pour des ondes se propageant le long d'une structure invariante dans le plan transverse à la direction de propagation

Propagation guidée



Pour tout vecteur \mathbf{v} (t_1 , t_2 ,z), On peut écrire: \mathbf{v} (t_1 , t_2 ,z)= \mathbf{v}_z (t_1 , t_2 ,z) \mathbf{z} + \mathbf{v}_t (t_1 , t_2 ,z)

 v_z est la composante longitudinale, ${f v_t}$ le vecteur transverse

L'opérateur vectoriel devient:

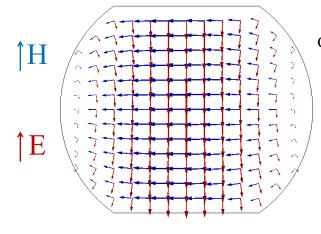
$$\nabla = \frac{\partial}{\partial z}\hat{z} + \nabla_t$$

$$\nabla^2 = \frac{\partial^2}{\partial z^2} + \nabla_t^2$$

3 MAG-EPFL

EPFL

Propagation guidée

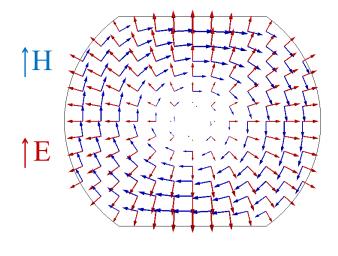


Conditions aux limites pour un CEP

$$\mathbf{E}^{\parallel} = \mathbf{0}$$

$$\mathbf{B}^{\perp} = \mathbf{0}$$

Propagation guidée



Conditions aux

limites:

$$\mathbf{E}^{\parallel}=\mathbf{0}$$

$$\mathbf{B}^{\perp} = \mathbf{0}$$

5 MAG-EPFL

EPFL

Propagation guidée

Equation d'onde (domaine temporel):

$$\nabla^2 \tilde{\mathbf{E}} - \frac{1}{\mathbf{c}^2} \frac{\partial^2 \tilde{\mathbf{E}}}{\partial \mathbf{T}^2} = \mathbf{0}$$

Transformée de $\mathbf{E}(\mathbf{r};\omega) = \int_{-\infty}^{+\infty} \tilde{\mathbf{E}}(\mathbf{r};T) \cdot e^{-j\omega T} dT$

$$\mathbf{E}(\mathbf{r};\omega) = \int_{-\infty}^{+\infty} \tilde{\mathbf{E}}(\mathbf{r};T) \cdot e^{-j\omega T} dT$$

1er

Fourier
$$\int_{-\infty}^{+\infty} \left[\nabla^2 \tilde{\mathbf{E}}(\mathbf{r}; T) \right] dT = \nabla^2 \int_{-\infty}^{+\infty} \tilde{\mathbf{E}}(\mathbf{r}; T) dT = \nabla^2 \mathbf{E}(\mathbf{r}; \omega)$$

terme:

$$\int_{-\infty}^{+\infty} \left[\frac{\partial^2 \tilde{\mathbf{E}}(\mathbf{r}; T)}{\partial T^2} \right] e^{-j\omega T} dT = \dots = -\omega^2 \int_{-\infty}^{+\infty} \tilde{\mathbf{E}}(\mathbf{r}; T) dT = -\omega^2 \mathbf{E}(\mathbf{r}; \omega)$$

2nd terme:

Equation d'onde (domaine

fréquentiel.):

$$\nabla^2 \mathbf{E} + \mathbf{k}^2 \mathbf{E} = \mathbf{0}$$

$$k^2 = \frac{a}{a}$$

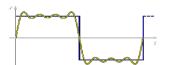
Propagation guidée

Signaux harmoniques:

$$\widetilde{\mathbf{E}}(t_1, t_2, z; T) = \mathbf{E}(t_1, t_2, z; \omega) \cdot e^{j\omega T}$$

freq. simple

Signaux généraux:



$$\tilde{\mathbf{E}}(t_1, t_2, z; T) = \int_{-\infty}^{+\infty} \mathbf{E}(t_1, t_2, z; \omega) \cdot e^{j\omega T} d\omega$$
Une infinité de fréquences.

Une infinité

7 MAG-EPFL

EPFL

Propagation guidée

Toute fonction $f(t_1, t_2, z) = E_z, E_{t1}, E_{t2}, H_z, H_{t1}, H_{t2}$ sera considérée comme le produit (séparation des variables):

$$f(t_1,t_2,z) = T(t_1,t_2)Z(z)$$

L'équation d'onde devient:

$$\begin{split} & \left(\nabla^{2} + k^{2}\right)f = 0 \\ & \left(\nabla^{2} + k^{2}\right)T\left(t_{1}, t_{2}\right)Z(z) = 0 \\ & \left(\nabla^{2} + k^{2}\right)T\left(t_{1}, t_{2}\right)Z(z) + T\left(t_{1}, t_{2}\right)\frac{d^{2}Z(z)}{dz^{2}} + k^{2}T\left(t_{1}, t_{2}\right)Z(z) = 0 \\ & = > \frac{\nabla_{t}^{2}T}{T} + k^{2} + \frac{1}{7}\frac{d^{2}Z}{dz^{2}} = 0 \end{split}$$

Propagation guidée

Cette relation doit être valable pour tout (t₁, t₂, z), donc

$$\frac{\nabla_t^2 T}{T} + k^2 = -\gamma^2$$

$$\frac{1}{Z} \frac{d^2 Z}{dz^2} = \gamma^2$$

La dépendance longitudinale a une solution analytique simple :

$$Z(z) = Ae^{-\gamma z} + Be^{+\gamma z}$$

Il s'agit de la superposition d'une progressive et d'une onde rétrograde

9 MAG-EPFL

EPFL

Propagation guidée

γ : coefficient de propagation longitudinal

$$\gamma = \alpha + j\beta$$

 α : atténuation linéique [Neper/m] ou [dB/m]

 β : déphasage linéique [rad/m]

Propagation guidée

Dans le cas ou on ne considère que des ondes progressives, B=0. On peut écrire les champs **E** et **M** de la manière suivante

$$\mathbf{E}(\mathbf{t}_1, \mathbf{t}_2, \mathbf{z}) = \mathbf{e}(\mathbf{t}_1, \mathbf{t}_2) e^{-\gamma \mathbf{z}} = (\mathbf{e}_z \hat{\mathbf{z}} + \mathbf{e}_t) e^{-\gamma \mathbf{z}}$$
$$\mathbf{H}(\mathbf{t}_1, \mathbf{t}_2, \mathbf{z}) = \mathbf{h}(\mathbf{t}_1, \mathbf{t}_2) e^{-\gamma \mathbf{z}} = (\mathbf{h}_z \hat{\mathbf{z}} + \mathbf{h}_t) e^{-\gamma \mathbf{z}}$$

La partie transverse va évidemment dépendre de la géométrie transverse du guide

11 MAG-EPFL

EPFL

Dépendance transverse

$$\left(\nabla_t^2 + k^2 + \gamma^2\right) \mathbf{e} = \left(\nabla_t^2 + k_c^2\right) \mathbf{e} = 0$$

$$\left(\nabla_t^2 + k^2 + \gamma^2\right) \mathbf{h} = \left(\nabla_t^2 + k_c^2\right) \mathbf{h} = 0$$

$$k_c^2 = k^2 + \gamma^2$$

Les valeurs admissibles pour k_c sont les valeurs propres du guide, les vecteurs ${\bf e}$ et ${\bf h}$ correspondants les modes propres ou modes du guide

Constante de propagation longitudinale

Une constante de propagation correspond à chaque valeur propre:

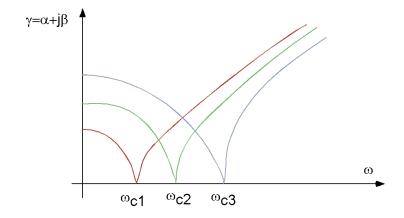
$$\gamma = \sqrt{k_c^2 - k^2} \qquad k = \omega \sqrt{\varepsilon \mu}$$

Ainsi, dans un cas sans pertes, la constant de propagation en function de la relation entre k (nombre de d'onde)et k_c peut être réelle ou imaginaire

$$\begin{split} & \sin k_c > \omega \sqrt{\varepsilon \mu} \quad \text{alors } \gamma = \alpha \\ & \sin k_c = \omega \sqrt{\varepsilon \mu} \quad \text{alors } \gamma = 0 \\ & \sin k_c < \omega \sqrt{\varepsilon \mu} \quad \text{alors } \gamma = j\beta \end{split}$$

13 MAG-EPFL

Diagramme de dispersion



Propagation guidée

Les 6 composantes des champs ne sont pas indépendantes, the six composants Des modes non plus. En effet, par les équations de Maxwell, nous pouvons écrire:

$$\nabla_{\mathbf{t}} \times \mathbf{e}_{\mathbf{t}} = -j\omega\mu (h_z \hat{\mathbf{z}})$$
$$\nabla_{\mathbf{t}} \times \mathbf{h}_{\mathbf{t}} = j\omega\varepsilon (e_z \hat{\mathbf{z}})$$

Nous obtenons finalement (après quelques calculs ②):

$$k_c^2 \mathbf{e_t} = -\gamma \nabla_t e_z + j\omega \mu \hat{\mathbf{z}} \times \nabla_t h_z$$
$$k_c^2 \mathbf{h_t} = -\gamma \nabla_t h_z - j\omega \varepsilon \hat{\mathbf{z}} \times \nabla_t e_z$$

15 MAG-EPFL

Propagation guidée

Donc, pur un problème donné, il est suffisant de calculer e_z et h_z. Les autres composants seront obtenus par les équations de Maxwell

Stratégie

- Calculer e_z et h_z en résolvant:
- 2. Calculer la constant de propagation longitudinale. Pour une onde progressive, choisir la racine avec $Im(\gamma)>0$
- 3. Calculer les composantes transverses des modes
- 4. Reconstruire les champs électromagnétiques
- Obtenir les résultats pour l'onde rétrograde, en remplaçant γ by -γ

$$(\nabla_t^2 + k_c^2) e_z = 0 \; ; \; (\nabla_t^2 + k_c^2) h_z = 0$$

$$\gamma = \alpha + j\beta = \sqrt{k_c^2 - k^2}$$

$$k_c^2 \mathbf{e_t} = -\gamma \nabla_t e_z + j\omega \mu \hat{\mathbf{z}} \times \nabla_t h_z$$

$$k_c^2 \mathbf{h}_t = -\gamma \nabla_t h_z - j\omega \varepsilon \hat{\mathbf{z}} \times \nabla_t e_z$$

$$\mathbf{E}(t_1, t_2, z) = (e_z \hat{\mathbf{z}} + \mathbf{e_t})e^{-\gamma z}$$

$$\mathbf{H}(t_1, t_2, z) = (h_z \hat{\mathbf{z}} + \mathbf{h_t}) e^{-\gamma z}$$

17 MAG-EPFL

Equation de Helmholtz

$$\left(\nabla_t^2 + k_c^2\right) \mathbf{e}_z = 0 \; ; \; \left(\nabla_t^2 + k_c^2\right) h_z = 0$$

	TEM	TM or E	TE or H	Hybrid
	Mode	Modes	Modes	Modes
ez	0	not 0	0	not 0
$h_{\mathbf{Z}}$	0	0	not 0	not 0

Examples

■ Guides d'ondes : TE, TM

19 MAG-EPFL

EPFL

Mode TEM

Equation caractéristique :

$$e_z = h_z = 0$$

对 Seconde étape:

$$k_c^2 \mathbf{e_t} = -\gamma \nabla_t e_z + j\omega \mu \hat{\mathbf{z}} \times \nabla_t h_z = 0$$

$$k_c^2 \mathbf{h_t} = -\gamma \nabla_t h_z - j\omega \varepsilon \hat{\mathbf{z}} \times \nabla_t e_z = 0$$

Mode TEM

→ Deux solutions:

$$\mathbf{e_t} = \mathbf{h_t} = 0$$
 (trivial)
 $k_c = 0 \implies \gamma = jk = j\omega\sqrt{\varepsilon\mu}$

21 MAG-EPFL

EPFL

Mode TEM

⊼ Résolution des équations de Maxwell:

$$\nabla_t \times \mathbf{e_t} = 0 \qquad -\gamma \hat{\mathbf{z}} \times \mathbf{e_t} = -j\omega\mu \mathbf{h_t}$$
$$\nabla_t \times \mathbf{h_t} = 0 \qquad -\gamma \hat{\mathbf{z}} \times \mathbf{h_t} = j\omega\varepsilon \mathbf{e_t}$$

▼ Equation de Laplace:

$$\mathbf{e_t} = -\nabla_t V$$
 with $\nabla_t^2 V = 0$

Mode TEM

□ Le champ magnétique est obtenu par:

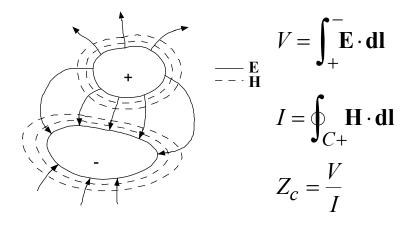
$$\mathbf{h_t} = \frac{\gamma}{j\omega\mu} \hat{\mathbf{z}} \times \mathbf{e_t} = \frac{j\omega\varepsilon}{\gamma} \hat{\mathbf{z}} \times \mathbf{e_t}$$

$$Z_{\text{mod}} = \frac{j\omega\mu}{\gamma} = \frac{\gamma}{j\omega\varepsilon} = \sqrt{\frac{\mu}{\varepsilon}}$$

23 MAG-EPFL

EPFL

Mode TEM



Mode TEM

- Définition univoque du courant et de la tension
- Champs identiques aux champs statiques
- → Fréquence de coupure nulle
- Nécessite au moins deux conducteurs séparés

Le modèle de lignes de transmission classique est en fait une solution en mode TEM sont

25 MAG-EPFL

EPFL

Modes TM

$$\left(\nabla_t^2 + k_c^2\right) \mathbf{e}_z = 0$$

Zes autres composantes sont obtenues par:

$$k_c^2 \mathbf{e_t} = -\gamma \nabla_t e_z \quad \mathbf{h_t} = \frac{j\omega\varepsilon}{\gamma} \hat{\mathbf{z}} \times \mathbf{e_t}$$

Modes TM

$$\gamma = \sqrt{k_c^2 - \omega^2 \varepsilon \mu}$$

▼ Impédance d'onde:

$$Z_{\text{mod}} = \frac{|\mathbf{e_t}|}{|\mathbf{h_t}|} = \frac{\gamma}{j\omega\varepsilon} = \frac{\sqrt{\omega^2 \mu\varepsilon - k_c^2}}{\omega\varepsilon}$$

27 MAG-EPFL

EPFL

Modes TE

$$\left(\nabla_t^2 + k_c^2\right) h_z = 0$$

Zes autres composantes sont obtenues par:

$$k_c^2 \mathbf{h_t} = -\gamma \nabla_t h_z \quad \mathbf{e_t} = \frac{j\omega\mu}{\gamma} \mathbf{h_t} \times \hat{\mathbf{z}}$$

TE modes

$$\gamma = \sqrt{k_c^2 - \omega^2 \varepsilon \mu}$$

Impédance d'onde:

$$Z_{\text{mod}} = \frac{|\mathbf{e_t}|}{|\mathbf{h_t}|} = \frac{j\omega\mu}{\gamma} = \frac{\omega\mu}{\sqrt{\omega^2\mu\varepsilon - k_c^2}}$$

29 MAG-EPFL

EPFL

Coefficient de propagation longitudinal

$$\gamma = \alpha + j\beta = k_c \sqrt{1 - \left(\frac{\omega}{\omega_c}\right)^2} = \frac{\omega_c}{c} \sqrt{1 - \left(\frac{\omega}{\omega_c}\right)^2}$$

Vitesse de groupe

$$v_g = \left(\frac{\partial \beta}{\partial \omega}\right)^{-1} = c\sqrt{1 - \left(\frac{\omega_c}{\omega}\right)^2}$$

31 MAG-EPFL

EPFL

Vitesse de phase

$$v_{\varphi} = \frac{\omega}{\beta} = \frac{c}{\sqrt{1 - \left(\frac{\omega_c}{\omega}\right)^2}}$$

Longueur d'onde guidée

$$\lambda_g = \frac{2\pi}{\beta} = \frac{2\pi}{\sqrt{k^2 - k_c^2}} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_c}\right)^2}}$$

avec

$$\lambda_c = \frac{2\pi}{k_c}$$

5P5I		TEM Modes	TM Modes	TE Modes
	Basic equation	$\nabla_t^2 V = 0$	$\left(\nabla_t^2 + k_c^2\right) p_z = 0$	$\left(\nabla_t^2 + k_c^2\right) h_z = 0$
	γ	$\sqrt{-\omega^2 \varepsilon \mu} = j\omega \sqrt{\varepsilon \mu}$	$\sqrt{k_c^2 - \omega^2 \varepsilon \mu}$	$\sqrt{k_c^2 - \omega^2 \varepsilon \mu}$
		$j\omega\sqrt{arepsilon\mu}$		
	Ez	0	$e_z e^{-\gamma z}$	0
	Hz	0	0	$h_z e^{-\gamma z}$
	Et	$-\nabla_t V e^{-\gamma z}$	$-\left(\frac{\gamma}{k_c^2}\right)\nabla_t E_z$	$\left(\frac{j\omega\mu}{\gamma}\right)(\mathbf{H_t}\times\hat{\mathbf{z}})$
	Ht	$\left(\frac{\gamma}{j\omega\mu}\right)(\hat{\mathbf{z}}\times\mathbf{E_t})$	$\left(\frac{j\omega\varepsilon}{\gamma}\right)(\hat{\mathbf{z}}\times\mathbf{E}_{t})$	$-\left(\frac{\gamma}{k_c^2}\right)\nabla_t H_z$
34 MAG-EPFL	Zmod = et / ht	$\sqrt{rac{\mu}{arepsilon}}$	$\frac{\sqrt{\omega^2 \varepsilon \mu - k_c^2}}{\omega \varepsilon}$	$\frac{\omega\mu}{\sqrt{\omega^2\varepsilon\mu-k_c^2}}$

Dispersion et distorsion (1)

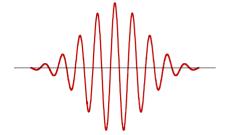
Lorsque un déphasage linéique β est une fonction non linéaire de la fréquence, on dit que la propagation est dispersive.
Les guides d'ondes et les fibres optiques supportent de modes dispersifs
Lorsqu'un signal se propage dans un mode dispersif, il subit une distorsion.

Cet effet est illustré par le cas de la propagation d'une impulsion Gaussienne, un cas où les développement mathématiques ne sont pas trop complexes

35 MAG-EPFL

EPFL

Dispersion et distortion (2)



Impulsion Gaussienne modulée

$$f(t,z=0) = \cos(\omega_0 t) e^{-\frac{1}{2}(t/\tau)^2}$$

Où 2τ est la largeur de l'impulsion au niveau $1/\sqrt{e}=0.606\,\mathrm{du}$ maximum

La transformée de Fourier d'une impulsion Gaussienne possède aussi une dépendance Gaussienne:

$$\underline{F}(\omega, z = 0) = \tau \sqrt{2\pi} e^{-\frac{1}{2} \left[\tau(\omega - \omega_0)\right]^2}$$

Dispersion et distortion (3)

Le signal se propage le long de la ligne dispersive, et subit un déphasage βz .

$$\underline{F}(\omega, z) = \tau \sqrt{2\pi} e^{-\frac{1}{2} \left[\tau(\omega - \omega_0)\right]^2} e^{-j\beta z}$$

La fonction correspondante dans le domaine temporel est trouvé en prenant la transformée de Fourier inverse

$$f(t,z) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega,z) e^{j\omega t} d\omega = \frac{\tau \sqrt{2\pi}}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{1}{2} \left[\tau(\omega - \omega_0)\right]^2} e^{-j\beta z} e^{j\omega t} d\omega$$

Mais β n'est pas une fonction simple de ω , cette intégrale ne peut donc pas être évaluée simplement

37 MAG-EPFL

EPFL

Dispersion et distortion (4)

Le spectre de l'impulsion est généralement à bande étroite, nos pouvons donc prendre un développement en série de Taylor de $\beta(\omega)$ autour de ω_0

$$\beta = \beta_0 + \beta_1 (\omega - \omega_0) + \frac{\beta_2}{2} (\omega - \omega_0)^2 + \dots \quad \text{avec} \quad \beta_0 = \beta(\omega_0) \text{ et } \beta_n = \frac{\partial^n \beta}{\partial \omega^n} \Big|_{\omega = \omega_0}$$

Le terme sous l'intégrale prend la forme

$$e^{-\frac{1}{2}\left[\tau(\omega-\omega_0)\right]^2}e^{-j\left[\beta_0+\beta_1(\omega-\omega_0)+\frac{\beta_2}{2}(\omega-\omega_0)^2\right]z}e^{j\omega t}$$

En regroupant les termes en ω , nous obtenons $e^{j\omega t}e^{-j\beta_1\omega z=e^{j\omega t}}$, avec, $t'=t-\beta_1 z$ ce qui correspond a une translation avec une vitesse $v_g=\frac{1}{\beta_1}$ (vélocité de groupe)

Dispersion et distortion (5)

En regroupant les termes en $(\omega - \omega_0)^2$, nous obtenons

$$e^{-\frac{1}{2}\left[\tau(\omega-\omega_0)\right]^2 - j\left[\frac{\beta_2}{2}(\omega-\omega_0)^2\right]z} = e^{-\frac{(\omega-\omega_0)^2}{2}\left[\tau^2 + j\beta_2 z\right]} = e^{-\frac{(\omega-\omega_0)^2\tau_e^2}{2}}$$

En prenant la transformée de Fourier inverse et en faisant quelques approximations, nous trouvons que la largeur de l'impulsion de vient

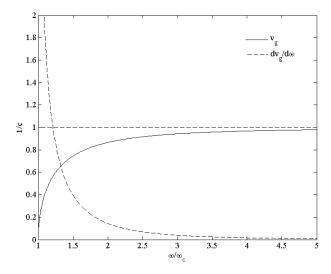
$$\tau' \cong \frac{\left|\underline{\tau_e^2}\right|}{\tau} = \sqrt{\tau^2 + \left(\frac{\beta_2 z}{\tau}\right)^2}$$

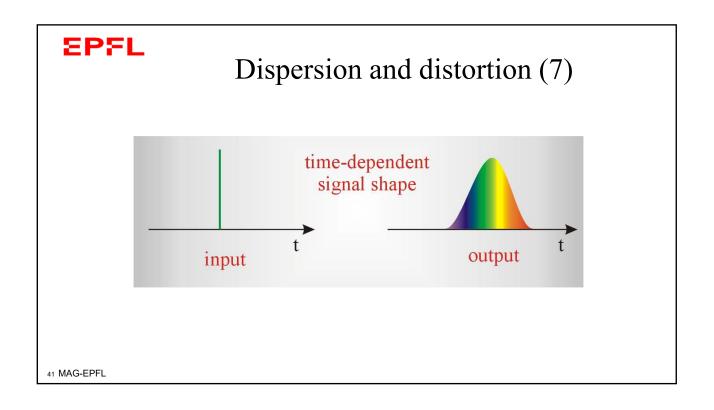
A une grande distance z, si le terme dispersif b2 est important, nous tendons vers $\tau'=\beta_2 z/\tau$. Donc une impulsion étroite en z=0 s'élargira plus rapidement qu'une impulsion plus large

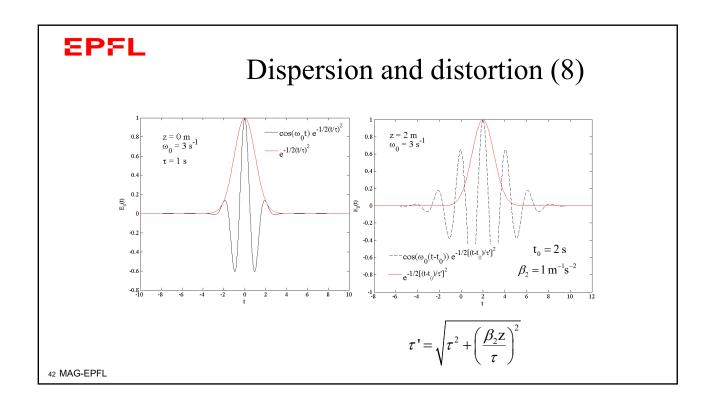
$$\beta_2 = -\frac{dv_g/d\omega}{v_g^2}$$

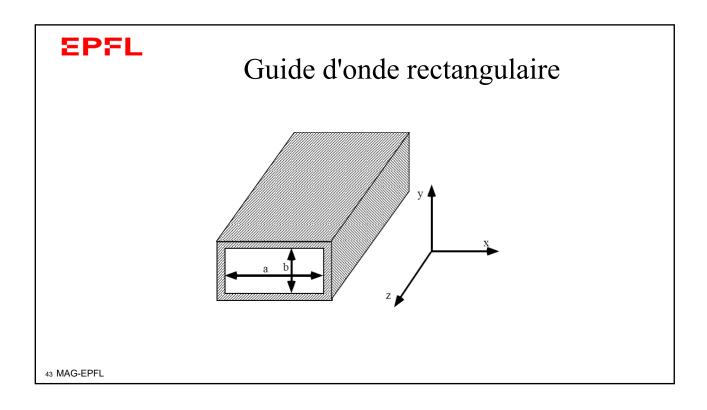
39 MAG-EPFL

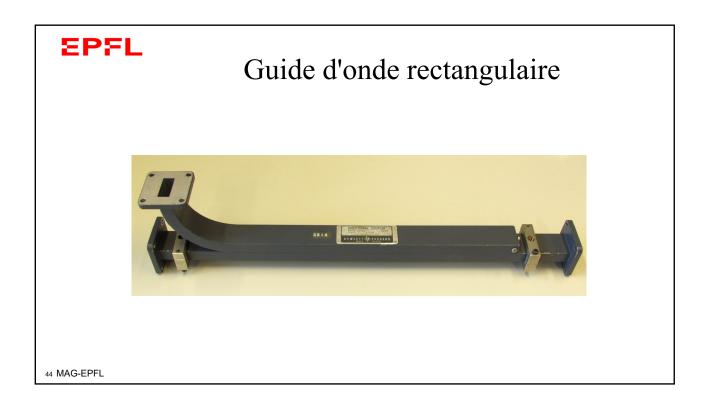
Dispersion and distortion (6)











Guide d'onde rectangulaire: Mode TEM

Nous devons résoudre l'équation de Laplace

$$\dot{\nabla}_t^2 V = 0$$

Sujette aux conditions aux limites suivantes

$$V|_{x=0,x=a,y=0,y=b} = cte$$

Comme les parois du guide sont connexes, V = cte

 $\mathbf{e_t} = \nabla_t V = 0$

Pas de Mode TEM

47 MAG-EPFL

EPFL

Guide d'onde rectangulaire: Modes TM

Equation de base
$$\left(\nabla_t^2 + k_c^2\right)$$
 $\mathbf{e}_z = \frac{\partial^2 \mathbf{e}_z}{\partial x^2} + \frac{\partial^2 \mathbf{e}_z}{\partial y^2} + k_c^2 \mathbf{e}_z = 0$

Séparation des variables $e_z = e_{zx}(x)e_{zy}(y)$

Ainsi
$$\frac{d^{2} e_{zx}}{dx^{2}} \frac{1}{e_{zx}} + \frac{d^{2} e_{zy}}{dy^{2}} \frac{1}{e_{zy}} = -k_{c}^{2}$$

$$-k_{x}^{2} - k_{y}^{2}$$

$$k_{x}^{2} + k_{y}^{2} = k_{c}^{2}$$

Guide d'onde rectangulaire: Modes TM

Nous devons résoudre $\frac{d^2 \, {\rm e}_{zx}}{dx^2} \frac{1}{{\rm e}_{zx}} = -k_x^2 \; \; , \; \frac{d^2 \, {\rm e}_{zy}}{dy^2} \frac{1}{{\rm e}_{zy}} = -k_y^2 \; \; , \; k_x^2 + k_y^2 = k_c^2$

Solutions: $e_{zx} = A \cos k_x x + B \sin k_x x$

 $\mathbf{e}_{zy} = C\cos k_y y + D\sin k_y y$

 $k_x^2 + k_y^2 = k_c^2$

Ainsi: $e_z = (A\cos k_x x + B\sin k_x x)(C\cos k_y y + D\sin k_y y)$

 $k_x^2 + k_y^2 = k_c^2$

49 MAG-EPFL

EPFL

Guide d'onde rectangulaire: Modes TM

Les constants A, B, C, D, k_x et k_y sont obtenues en utilisant les conditions aux limites :

$$e_z|_{x=0} = 0 \implies (A\cos k_x 0 + B\sin k_x 0)(C\cos k_y y + D\sin k_y y) = 0$$

Ainsi A= 0

$$e_z|_{y=0} = 0 \implies (A\cos k_x x + B\sin k_x x)(C\cos k_y 0 + D\sin k_y 0) = 0$$

Ainsi C= 0

Guide d'onde rectangulaire: Modes TM

$$e_z|_{x=a} = 0 \implies E_o \sin k_x a \sin k_y y = 0$$

Ainsi $k_x = m\pi/a$

$$e_z|_{y=b} = 0 \implies E_o \sin k_x x \sin k_y b = 0$$

Ainsi $k_y = n\pi/b$

avec $mn \neq 0$

51 MAG-EPFL

EPFL

Guide d'onde rectangulaire: Modes TM

Finalement
$$e_z = E_o \sin \frac{m\pi}{a} x \sin \frac{n\pi}{b} y$$

et
$$E_z = E_o \sin \frac{m\pi}{a} x \sin \frac{n\pi}{b} y e^{-\gamma z}$$

avec
$$\gamma = \sqrt{k_c^2 - k^2}$$

Guide d'onde rectangulaire: Modes TE

Equation de base
$$\left(\nabla_t^2 + k_c^2\right)h_z = \frac{\partial^2 h_z}{\partial x^2} + \frac{\partial^2 h_z}{\partial y^2} + k_c^2 h_z = 0$$

séparation des variables $h_z = h_{zx}(x)h_{zy}(y)$

ainsi
$$\frac{d^{2}h_{zx}}{dx^{2}} \frac{1}{h_{zx}} + \frac{d^{2}h_{zy}}{dy^{2}} \frac{1}{h_{zy}} = -k_{c}^{2}$$

$$-k_{x}^{2} - k_{y}^{2}$$

$$k_{x}^{2} + k_{y}^{2} = k_{c}^{2}$$

53 MAG-EPFL

EPFL

Guide d'onde rectangulaire: Modes TE

Nous devons résoudre
$$\frac{d^2h_{zx}}{dx^2}\frac{1}{h_{zx}} = -k_x^2$$
, $\frac{d^2h_{zy}}{dy^2}\frac{1}{h_{zy}} = -k_y^2$, $k_x^2 + k_y^2 = k_c^2$

Solutions:
$$h_{zx} = A\cos k_x x + B\sin k_x x$$

$$h_{zy} = C\cos k_y y + D\sin k_y y$$

$$k_x^2 + k_y^2 = k_c^2$$

Ainsi :
$$h_z = \big(A\cos k_x x + B\sin k_x x\big) \Big(C\cos k_y y + D\sin k_y y\Big)$$

$$k_x^2 + k_y^2 = k_c^2$$

Guide d'onde rectangulaire: Modes TE

Les conditions aux limites sont appliquées sur le champ électrique

$$\mathbf{e}_{x} = -\frac{j\omega\mu}{k_{c}^{2}}\frac{\partial h_{z}}{\partial y} = -\frac{j\omega\mu k_{y}}{k_{c}^{2}}\left(A\cos k_{x}x + B\sin k_{x}x\right)\left(-C\sin k_{y}y + D\cos k_{y}y\right)$$

$$\mathbf{e}_{y} = -\frac{j\omega\mu}{k_{c}^{2}}\frac{\partial h_{z}}{\partial x} = -\frac{j\omega\mu k_{y}}{k_{c}^{2}}\left(-A\sin k_{x}x + B\cos k_{x}x\right)\left(C\cos k_{y}y + D\sin k_{y}y\right)$$

$$\mathbf{e}_x\big|_{y=0,y=b} = 0$$
 ainsi $D = 0$ $k_y = \frac{n\pi}{b}$

$$\mathbf{e}_y \Big|_{x=0, x=a} = 0$$
 ainsi $\mathbf{B} = 0$ $k_x = \frac{m\pi}{a}$

55 MAG-EPFL

EPFL

Guide d'onde rectangulaire: Modes TE

Finalement

$$h_z = H_o \cos \frac{m\pi}{a} x \cos \frac{n\pi}{b} y$$

$$H_z = H_o \cos \frac{m\pi}{a} x \cos \frac{n\pi}{b} y e^{-\gamma z}$$

$$\gamma = \sqrt{k_c^2 - \omega^2 \varepsilon \mu}$$

Guide d'onde rectangulaire

	TM Modes	TE Modes
k_c	$\sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2} , mn \neq 0$	$\sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2} , m+n \neq 0$
ω _c	$\frac{1}{\sqrt{\mu\varepsilon}}\sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2}$	$\frac{1}{\sqrt{\mu\varepsilon}}\sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2}$
α	$k_c \sqrt{1 - \left(\frac{\omega}{\omega_c}\right)^2}$, $\omega < \omega_c$	$k_c \sqrt{1 - \left(\frac{\omega}{\omega_c}\right)^2}$, $\omega < \omega_c$
β	$k\sqrt{1-\left(\frac{\omega_c}{\omega}\right)^2}$, $\omega > \omega_c$	$k\sqrt{1-\left(\frac{\omega_c}{\omega}\right)^2}$, $\omega > \omega_c$

57 MAG-EPFL

Guide d'onde rectangulaire

TN	M I	Μо	des
----	-----	----	-----

TE Modes

Ez	$E_0 \sin \frac{m\pi}{a} x \sin \frac{n\pi}{b} y e^{-\gamma z}$	0
Hz	0	$H_0 \cos \frac{m\pi}{a} x \cos \frac{n\pi}{b} y e^{-\gamma z}$

Guide d'onde rectangulaire

TM Modes

TE Modes

Ex	$-\frac{\gamma m\pi}{ak_c^2}E_0\cos\frac{m\pi}{a}x\sin\frac{n\pi}{b}ye^{-\gamma z}$	$\frac{j\omega\varepsilon n\pi}{bk_c^2}H_0\cos\frac{m\pi}{a}x\sin\frac{n\pi}{b}ye^{-\gamma z}$
Еу	$-\frac{\gamma n\pi}{bk_c^2}E_0\sin\frac{m\pi}{a}x\cos\frac{n\pi}{b}ye^{-\gamma z}$	$-\frac{j\omega\varepsilon m\pi}{ak_c^2}H_0\sin\frac{m\pi}{a}x\cos\frac{n\pi}{b}ye^{-\gamma z}$
Hx	$\frac{j\omega\varepsilon n\pi}{bk_c^2}E_0\sin\frac{m\pi}{a}x\cos\frac{n\pi}{b}ye^{-\gamma z}$	$\frac{\gamma m\pi}{ak_c^2} H_0 \sin \frac{m\pi}{a} x \cos \frac{n\pi}{b} y e^{-\gamma z}$
Ну	$-\frac{j\omega\varepsilon m\pi}{ak_c^2}E_0\cos\frac{m\pi}{a}x\sin\frac{n\pi}{b}ye^{-\gamma z}$	$\frac{\gamma n\pi}{bk_c^2}H_0\cos\frac{m\pi}{a}x\sin\frac{n\pi}{b}ye^{-\gamma z}$
Z	$\sqrt{\frac{\mu}{\varepsilon}}\sqrt{1-\left(\frac{\omega_c}{\omega}\right)^2}$	$\frac{\sqrt{\frac{\mu}{\varepsilon}}}{\sqrt{1-\left(\frac{\omega_c}{\omega}\right)^2}}$

59 MAG-EPFL

Guide d'onde rectangulaire

Les modes TE et TM ne peuvent se propager que quand

$$\omega > \omega_C = \frac{1}{\sqrt{\varepsilon \mu}} \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2}$$

Mode dominant

La fréquence de coupure pour les deux familles de mode est donnée par

$$\omega_c = \frac{1}{\sqrt{\mu\varepsilon}} \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2} \quad , \qquad f_c = \frac{1}{2\pi\sqrt{\mu\varepsilon}} \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2}$$

Mais avec

Modes TM Modes TE $mn \neq 0$ $m+n \neq 0$

61 MAG-EPFL

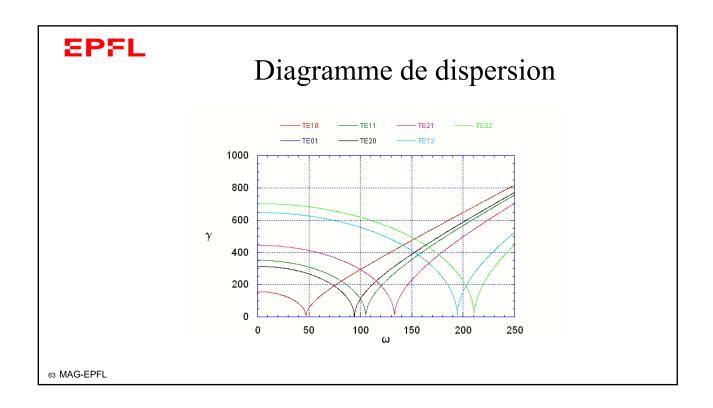
Mode dominant

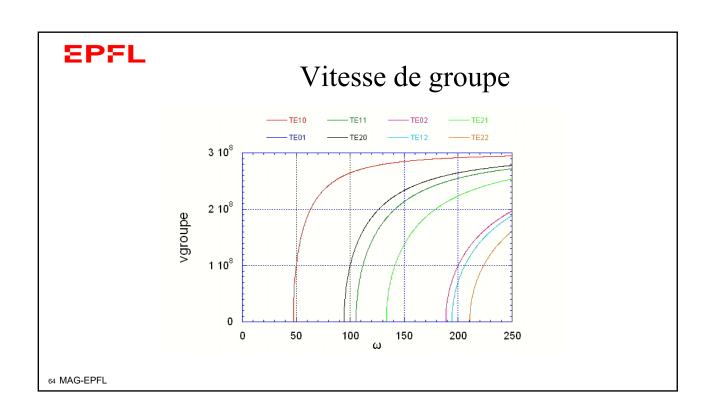
Ainsi, la fréquence de coupure la plus basse possible correspond Au modeTE_{10} :

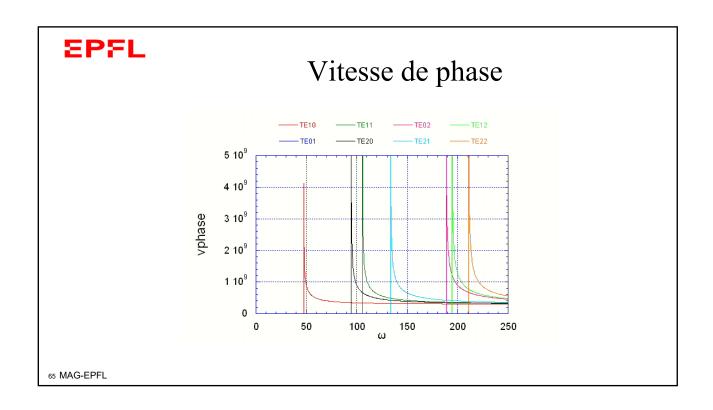
$$f_c|_{TE_{10}} = \frac{1}{2\pi\sqrt{\mu\varepsilon}} \frac{\pi}{a} = \frac{c}{2a}$$

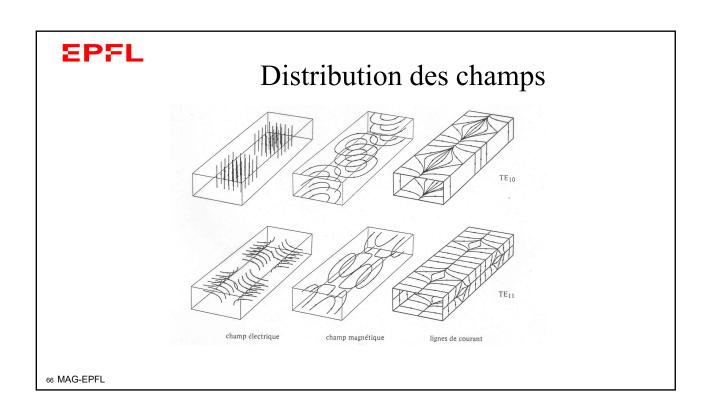
Le premier modes supérieur est donné par

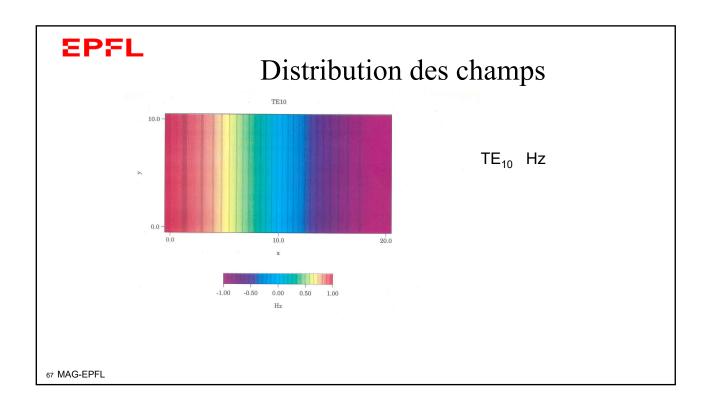
$$f_c|_{TE_{20}} = \frac{1}{2\pi\sqrt{\mu\varepsilon}}\frac{\pi}{a} = \frac{c}{a}$$
 or $f_c|_{TE_{01}} = \frac{1}{2\pi\sqrt{\mu\varepsilon}}\frac{\pi}{b} = \frac{c}{2b}$

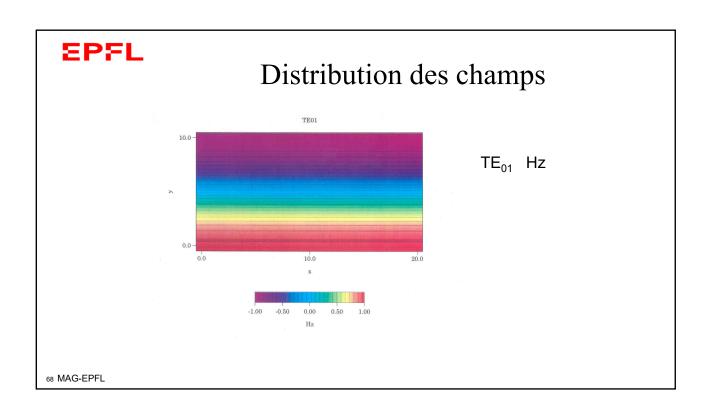


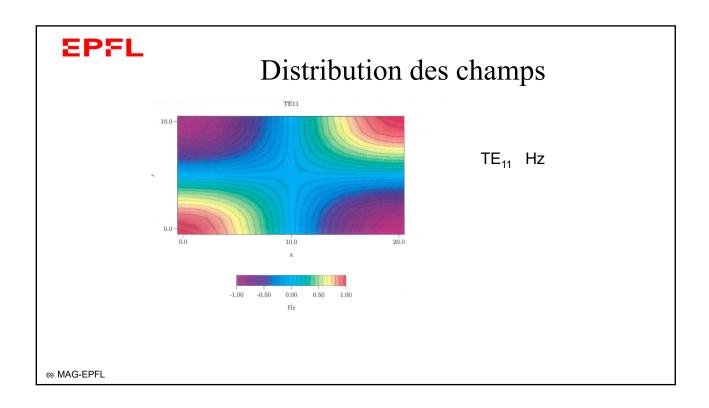


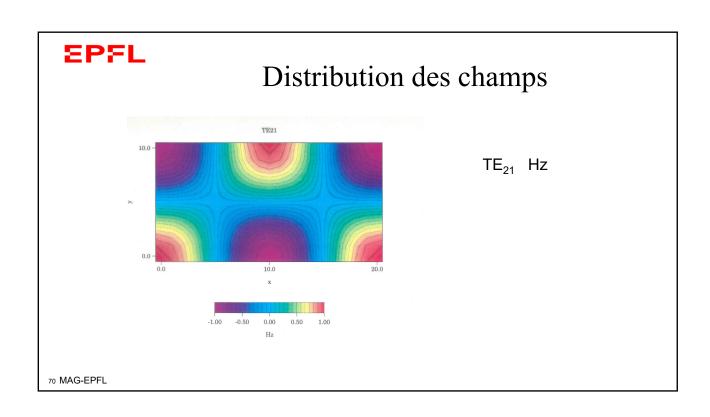


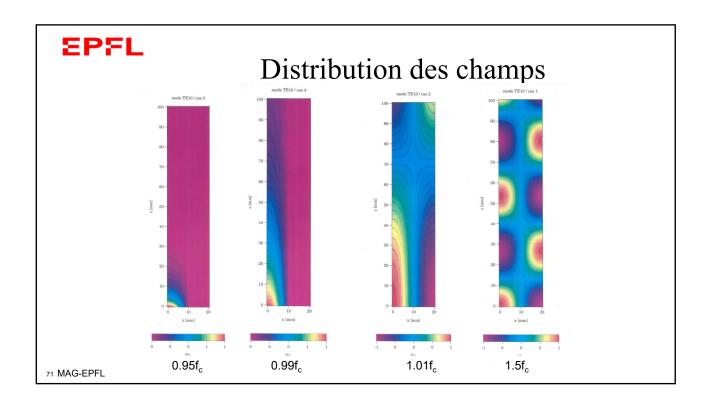


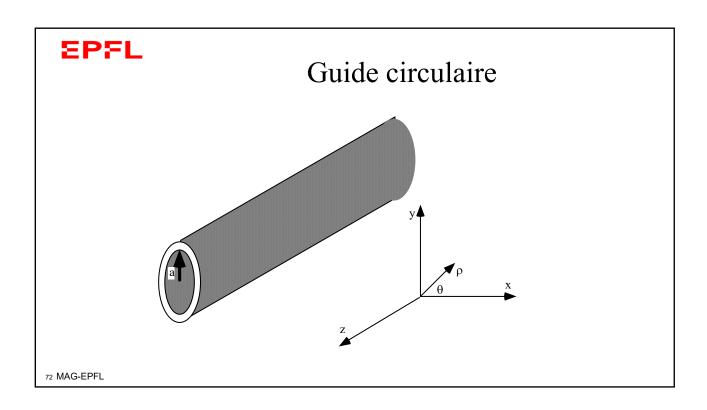












Guide circulaire

A cause de la symétrie circulaire du problème, Nous allons utiliser des coordonnées cylindriques

$$\begin{split} \mathbf{e}_{\rho} &= \frac{-1}{k_{c}^{2}} \left[\gamma \frac{\partial \mathbf{e}_{z}}{\partial \rho} + \frac{j\omega\mu}{\rho} \frac{\partial h_{z}}{\partial \varphi} \right] \\ \mathbf{e}_{\varphi} &= \frac{1}{k_{c}^{2}} \left[-\frac{\lambda}{\rho} \frac{\partial \mathbf{e}_{z}}{\partial \varphi} + j\omega\mu \frac{\partial h_{z}}{\partial \rho} \right] \\ h_{\rho} &= \frac{1}{k_{c}^{2}} \left[\frac{j\omega\varepsilon}{\rho} \frac{\partial \mathbf{e}_{z}}{\partial \varphi} + -\gamma \frac{\partial h_{z}}{\partial \rho} \right] \\ h_{\varphi} &= \frac{-1}{k_{c}^{2}} \left[j\omega\varepsilon \frac{\partial \mathbf{e}_{z}}{\partial \rho} + \frac{\gamma}{\rho} \frac{\partial h_{z}}{\partial \varphi} \right] \end{split}$$

73 MAG-EPFL

EPFL

Modes TM

Z Equation d'onde en coordonnées cylindriques

$$\left(\frac{\partial^2}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2}{\partial \phi^2} + k_c^2\right) \mathbf{e}_z = 0$$

Séparation des variables

$$e_z(\rho,\varphi) = R(\rho)P(\varphi)$$

Modes TM

Ainsi

$$\frac{\rho^{2}}{R} \frac{d^{2}R}{d\rho^{2}} + \frac{\rho}{R} \frac{dR}{d\rho} + \rho^{2} k_{c}^{2} = -\frac{1}{P} \frac{d^{2}P}{d\varphi^{2}}$$

Qui devient

$$\begin{split} &-\frac{1}{P}\frac{d^{2}P}{d\varphi^{2}}=k_{\varphi}^{2}\ , \frac{d^{2}P}{d\varphi^{2}}+Pk_{\varphi}^{2}=0\\ &\frac{\rho^{2}}{R}\frac{d^{2}R}{d\rho^{2}}+\frac{\rho}{R}\frac{dR}{d\rho}+\rho^{2}k_{c}^{2}=k_{\varphi}^{2}\ ,\ \rho^{2}\frac{d^{2}R}{d\rho^{2}}+\rho\frac{dR}{d\rho}+R\left(\rho^{2}k_{c}^{2}-k_{\varphi}^{2}\right)=0 \end{split}$$

75 MAG-EPFL

EPFL

Modes TM

Solution de l'équation en φ :

$$P(\varphi) = A\sin k_{\varphi}\varphi + B\cos k_{\varphi}\varphi$$

La solution doit être périodique en $\phi,$ donc $\textbf{k}_{_{\!\phi}}$ est un nombre entier

$$P(\varphi) = A\sin n\varphi + B\cos n\varphi$$

Modes TM

L'équation en ρ prend la forme d'une équation de Bessel:

$$\rho^{2} \frac{d^{2}R}{d\rho^{2}} + \rho \frac{dR}{d\rho} + R(\rho^{2}k_{c}^{2} - n^{2}) = 0$$

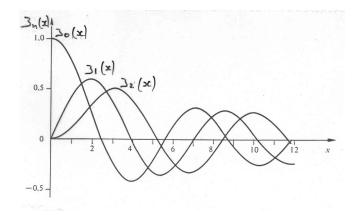
A laquelle les solutions sont données par

$$R(\rho) = CJ_n(k_c\rho) + DY_n(k_c\rho)$$

77 MAG-EPFL

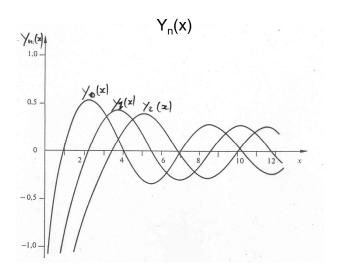
EPFL

Fonctions de Bessel du premier type



 $J_n(x)$

Fonctions de Bessel du second type



D=0

79 MAG-EPFL

EPFL

Modes TM

Ainsi

$$e_z(\rho,\varphi) = J_n(k_c\rho)(A\sin n\varphi + B\cos n\varphi)$$

Condition en ρ =a:

$$e_z|_{\rho=a} = J_n(k_c a)(A\sin n\varphi + B\cos n\varphi) = 0$$

Donc $k_{cnm} = \frac{p_{nm}}{a}$ où p_{nm} est le zero d'ordre m de la function de Bessel J_n

Modes TM

Coefficient de propagation

$$\beta_{nm} = \sqrt{k_0^2 - k_c^2} = \sqrt{k_0^2 - \left(\frac{p_{nm}}{a}\right)^2}$$

Fréquence de coupure

$$f_{c_{nm}} = \frac{k_c}{2\pi\sqrt{\mu\varepsilon}} = \frac{p_{nm}}{2\pi a\sqrt{\mu\varepsilon}}$$

81 MAG-EPFL

Modes TE

En faisant la même analyse que pour les modes TM on écrit

$$h_z(\rho,\varphi) = J_n(k_c\rho)(A\sin n\varphi + B\cos n\varphi)$$

Les conditions aux limites s'appliquent sur le champ électrique:

$$e_{\varphi}(\rho,\varphi) = \frac{j\omega\mu}{k_c} (A\sin n\varphi + B\cos n\varphi) J'_n(k_c\rho)$$

Où
$$e_{\varphi}\Big|_{\rho=a} = \frac{j\omega\mu}{k_c} J'_n(k_c a) (A\sin n\varphi + B\cos n\varphi) = 0$$

Modes TE

Ainsi $k_{cnm} = \frac{p'_{nm}}{a}$ où p'_{nm} est le zéro d'ordre m de la dérivée de la fonction de Bessel du premier type J'_{n}

Le coefficient de propagation est donné par

$$\beta_{nm} = \sqrt{k^2 - k_c^2} = \sqrt{k^2 - \left(\frac{p'_{nm}}{a}\right)^2}$$

Et la fréquence de coupure par $f_{c_{nm}} = \frac{p'_{nm}}{2\pi a \sqrt{\mu \varepsilon}}$

83 MAG-EPFL

Guides circulaires

	Modes TM	Modes TE
k _c	$\frac{p_{nm}}{a}$	$\frac{p'_{nm}}{a}$
ω _c	$\frac{p_{nm}}{a\sqrt{\mu\varepsilon}}$	$\frac{p'_{nm}}{a\sqrt{\mu\varepsilon}}$
α	$k_c \sqrt{1 - \left(\frac{\omega}{\omega_c}\right)^2}$, $\omega < \omega_c$	$k_c \sqrt{1 - \left(\frac{\omega}{\omega_c}\right)^2}$, $\omega < \omega_c$
β	$k\sqrt{1-\left(\frac{\omega_c}{\omega}\right)^2}$, $\omega > \omega_c$	$k\sqrt{1-\left(\frac{\omega_c}{\omega}\right)^2}$, $\omega > \omega_c$

Guides circulaires

Ez	$J_n(k_c\rho)(A\sin n\varphi + B\cos n\varphi)e^{-\gamma z}$	0
Hz	0	$J_n(k_c\rho)(A\sin n\varphi + B\cos n\varphi)e^{-\gamma z}$

85 MAG-EPFL

Guides circulaires

Ер	$\frac{-\gamma}{k_c} (A\sin n\varphi + B\cos n\varphi) J'_n(k_c \rho) e^{-\gamma z}$	$-\frac{j\omega\mu n}{k_c^2\rho}(A\cos n\varphi - B\sin n\varphi)J_n(k_c\rho)e^{-\gamma z}$
Εφ	$-\frac{\gamma n}{k_c^2 \rho} (A\cos n\varphi - B\sin n\varphi) J_n(k_c \rho) e^{-\gamma z}$	$\frac{j\omega\mu}{k_c} (A\sin n\varphi + B\cos n\varphi) J'_n(k_c\rho) e^{-\gamma z}$
Ηρ	$\frac{j\omega\varepsilon n}{k_c^2\rho}(A\cos n\varphi - B\sin n\varphi)J_n(k_c\rho)e^{-\gamma z}$	$\frac{-\gamma}{k_c} (A \sin n\varphi + B \cos n\varphi) J_n'(k_c \rho) e^{-\gamma z}$
Нφ	$\frac{j\omega\varepsilon}{k_c} (A\sin n\varphi + B\cos n\varphi) J_n'(k_c \rho) e^{-\gamma z}$	$-\frac{\gamma n}{k_c^2 \rho} (A\cos n\varphi - B\sin n\varphi) J_n(k_c \rho) e^{-\gamma z}$
Z	$\sqrt{\frac{\mu}{\varepsilon}}\sqrt{1-\left(\frac{\omega_c}{\omega}\right)^2}$	$\frac{\sqrt{\frac{\mu}{\varepsilon}}}{\sqrt{1-\left(\frac{\omega_{\mathbf{c}}}{\omega}\right)^2}}$

Mode dominant

Modes TE $f_{c_{nm}} = \frac{p'_{nm}}{2\pi a \sqrt{\mu \varepsilon}}$

$f_{c_{nm}} =$	$=\frac{p_{nm}}{2\pi a \sqrt{\mu \varepsilon}}$
	$f_{c_{nm}} =$

n	p'n1	p'n2	p'n3
0	3.832	7.016	10.174
1	1.841	5.331	8.536
2	3.054	6.706	9.970
3	4.2012	6.0152	11.3459
4	5.3175	9.2824	12.6819
5	6.4156	10.5199	13.9872
6	7.5013	11.7349	15.2682

n	pnl	pn2	pn3
0	2.405	5.520	8.654
1	3.832	7.016	10.174
2	5.135	8.417	11.620
3	6.38016	9.76102	13.01520
4	7.58834	11.06471	14.37254
5	8.77142	12.33860	15.70017
6	9.93611	13.58929	17.0038

87 MAG-EPFL

EPFL

Mode dominant

Mode TE₁₁

$$f_{c_{nm}} = \frac{1.841}{2\pi a \sqrt{\mu \varepsilon}}$$

Premier mode supérieur

Modes TE $f_{c_{nm}} = \frac{p'_{nm}}{2\pi a \sqrt{\mu \varepsilon}}$

Modes TM	f _c =	$=\frac{p_{nm}}{1-\frac{1}{n}}$
	o c _{nm}	$2\pi a \sqrt{\mu \varepsilon}$

n	p'n1	p'n2	p'n3
0	3.832	7.016	10.174
1	1.841	5.331	8.536
2	3.054	6.706	9.970
3	4.2012	6.0152	11.3459
4	5.3175	9.2824	12.6819
5	6.4156	10.5199	13.9872
6	7.5013	11.7349	15.2682

n	pnl	pn2	pn3
0	2.405	5.520	8.654
1	3.832	7.016	10.174
2	5.135	8.417	11.620
3	6.38016	9.76102	13.01520
4	7.58834	11.06471	14.37254
5	8.77142	12.33860	15.70017
6	9.93611	13.58929	17.0038

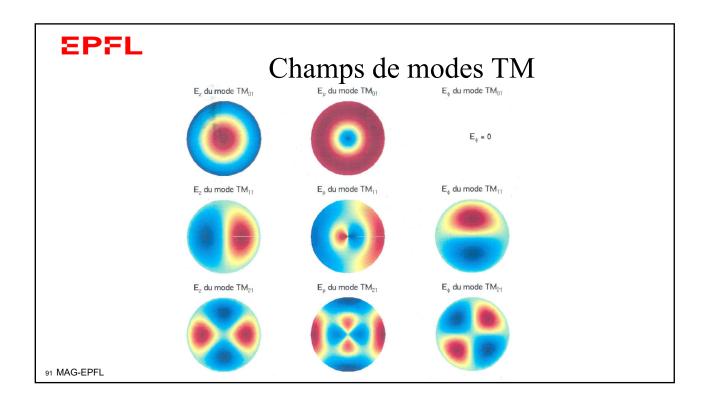
89 MAG-EPFL

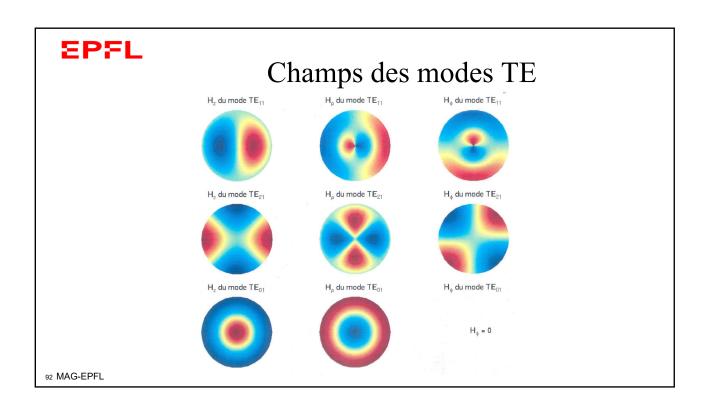
EPFL

Premier mode supérieur

Mode TM₀₁

$$f_{c_{nm}} = \frac{2.405}{2\pi a \sqrt{\mu \varepsilon}}$$





Constante de propagation longitudinale

Une constante de propagation correspond à chaque valeur propre:

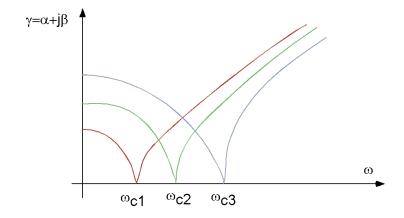
$$\gamma = \sqrt{k_c^2 - k^2} \qquad k = \omega \sqrt{\varepsilon \mu}$$

Ainsi, dans un cas sans pertes, en fonction de la relation entre k et k_c , la constant de propagation longitudinale peut être réelle ou imaginaire

$$\begin{split} & \sin k_c > \omega \sqrt{\varepsilon \mu} \quad \text{alors } \gamma = \alpha \\ & \sin k_c = \omega \sqrt{\varepsilon \mu} \quad \text{alors } \gamma = 0 \\ & \sin k_c < \omega \sqrt{\varepsilon \mu} \quad \text{alors } \gamma = j\beta \end{split}$$

93 MAG-EPFL

Diagramme de dispersion



Constante de propagation longitudinale

$$\gamma = \alpha + j\beta = k_c \sqrt{1 - \left(\frac{\omega}{\omega_c}\right)^2} = \frac{\omega_c}{c} \sqrt{1 - \left(\frac{\omega}{\omega_c}\right)^2}$$

95 MAG-EPFL

EPFL

Vitesse de groupe

$$v_g = \left(\frac{\partial \beta}{\partial \omega}\right)^{-1} = c\sqrt{1 - \left(\frac{\omega_c}{\omega}\right)^2}$$

Vitesse de phase

$$v_{\varphi} = \frac{\omega}{\beta} = \frac{c}{\sqrt{1 - \left(\frac{\omega_c}{\omega}\right)^2}}$$

97 MAG-EPFL

EPFL

Longueur d'onde guidée

$$\lambda_g = \frac{2\pi}{\beta} = \frac{2\pi}{\sqrt{k^2 - k_c^2}} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_c}\right)^2}}$$

Avec

$$\lambda_c = \frac{2\pi}{k_c}$$